α-Melanocyte-stimulating hormone prevents glutamate excitotoxicity in developing chicken retina via MC4R-mediated down-regulation of microRNA-194

نویسندگان

  • Yan Zhang
  • Qiyu Bo
  • Weihui Wu
  • Chang Xu
  • Guangwei Yu
  • Shan Ma
  • Qianhui Yang
  • Yunshan Cao
  • Qian Han
  • Yusha Ru
  • Xun Liu
  • Rui Hua Wei
  • Fei E. Wang
  • Xiaomin Zhang
  • Xiaorong Li
چکیده

Glutamate excitotoxicity is a common pathology to blinding ischemic retinopathies, such as diabetic retinopathy, glaucoma, and central retinal vein or artery occlusion. The development of an effective interventional modality to glutamate excitotoxicity is hence important to preventing blindness. Herein we showed that α-melanocyte-stimulating hormone (α-MSH) time-dependently protected against glutamate-induced cell death and tissue damage in an improved embryonic chicken retinal explant culture system. α-MSH down-regulated microRNA-194 (miR-194) expression during the glutamate excitotoxicity in the retinal explants. Furthermore, pharmacological antagonists to melanocortin 4 receptor (MC4R) and lentivirus-mediated overexpression of pre-miR-194 abrogated the suppressing effects of α-MSH on glutamate-induced activities of caspase 3 or 7, the ultimate enzymes for glutamate-induced cell death. These results suggest that the protective effects of α-MSH may be due to the MC4R mediated-down-regulation of miR-194 during the glutamate-induced excitotoxicity. Finally, α-MSH attenuated cell death and recovered visual functions in glutamate-stimulated post-hatch chick retinas. These results demonstrate the previously undescribed protective effects of α-MSH against glutamate-induced excitotoxic cell death in the cone-dominated retina both in vitro and in vivo, and indicate a novel molecular mechanism linking MC4R-mediated signaling to miR-194.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine- induced hypophagia is mediated via NMDA and mGlu1 receptors in chicken

Background: Feeding behavior is regulated by a complex network which interacts via diverse signals from central and peripheral tissues. It is known dopaminergic and glutamatergic systems have crucial role on food intake regulation but scarce reports exist on their interaction in appetite regulation in broilers. OBJECTIVES: The present study was designed to examine the role of glutamatergic syst...

متن کامل

Melanocortin 4 receptor distribution in the human hypothalamus.

OBJECTIVE The melanocortin 4 receptor (MC4R) is an essential regulator of energy homeostasis and metabolism, and MC4R mutations represent the most prevalent monogenetic cause of obesity in humans known to date. Hypothalamic MC4Rs in rodents are well characterized in neuroanatomical and functional terms, but their expression pattern in the human hypothalamus is unknown. DESIGN AND METHODS To d...

متن کامل

Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR.

Most of our understanding of G protein-coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single rece...

متن کامل

Desacetyl-α-melanocyte stimulating hormone and α-melanocyte stimulating hormone are required to regulate energy balance

OBJECTIVE Regulation of energy balance depends on pro-opiomelanocortin (POMC)-derived peptides and melanocortin-4 receptor (MC4R). Alpha-melanocyte stimulating hormone (α-MSH) is the predicted natural POMC-derived peptide that regulates energy balance. Desacetyl-α-MSH, the precursor for α-MSH, is present in brain and blood. Desacetyl-α-MSH is considered to be unimportant for regulating energy b...

متن کامل

Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015